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Abstract

A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors
under an ac voltage is generalized by including non-adiabatic space-charge-field effects. Numerical calculations indicate
that field-domain effects are only important at high temperatures or high voltages when both injection and sequential-
tunneling currents are significant. On the other hand, it is found that the non-adiabatic effects included in this gen-
eralized theory become significant at low temperatures and low voltages when field-domain effects are negligible. In
order to explain the non-adiabatic charge-density fluctuations quantum-statistically, a non-adiabatic differential
equation is derived based on the self-consistent Hartree model by using a shifted Fermi-Dirac model for the local
fluctuation of electron distributions. The non-adiabatic effect is found to cause an “equilibrium” state variation with

time under an ac voltage.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Multiple-quantum-well (MQW) photodetectors
using intersubband transitions have attracted a lot
of studies over the past few years [1]. Transient
spectroscopy allows us to gain information on the
sequential-tunneling processes between quantum
wells (QWs) and thus QW parameters, including
geometric and QW capacitances at the same time.

* Corresponding author. Tel.: +1-505-846-5788; fax: +1-505-
846-6098.

E-mail address: danhong.huang@kirtland.af.mil (D. Hu-
ang).

Recently, a residual dark current in quantum-well
infrared photodetectors (QWIPs) was reported
when an ac bias voltage was swept through zero
[2]. Later, a roll-off of the dynamical responsivity
in QWIPs was observed when the frequency of a
chopped incident optical flux was increased be-
yond a certain value [3]. More recently, a counter-
clockwise hysteresis loop for the tunneling current
and a clockwise hysteresis loop for the emission
current in QWIPs was seen experimentally as the
device temperature was swept up from 10 to 300 K
and then back down [4]. These new phenomena
found in QWIPs were physically explained by a
non-adiabatic sequential-tunneling model [5]. The
non-adiabatic effect discussed in this paper refers
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to the fact that a transient current not only
depends on the magnitude of an electric field, but
also depends on its time derivative.

For the field-domain effect, we generalize the
previous theory [6] for studying the distribution
of non-uniform fields in MQW photodetectors
under an ac voltage by including non-adiabatic
space-charge-field effects. We find from numerical
results that field-domain effects are only impor-
tant at high temperatures or high voltages when
both injection and sequential-tunneling currents
are significant. On the other hand, we find that
non-adiabatic effects included in the generalized
theory become visible at low temperatures and
low voltages when field-domain effects are negli-
gible. The time duration for non-adiabatic effects
is found to depend on the quantum capacitance,
while the classical dielectric displacement current
is found to be related to the geometric capaci-
tance. Moreover, a negative conduction current
is predicted under a positive voltage in non-
steady state.

For non-adiabatic transport, we consider elec-
trons in a MQW system in the presence of a uni-
form ac electric field. We assume that electrons
during the sequential-tunneling process only see an
instantaneous electric field and stay in equilibrium
states due to very fast elastic and inelastic scatter-
ing inside the quantum well. The non-adiabatic
effect causes an “equilibrium” state to vary with
time. As a result, the charge-density fluctuation in
the QW will modify the Hartree potential in the
surrounding barrier region, and thus greatly affect
the sequential tunneling of electrons through the
barrier. Simultaneously, the non-adiabatic fluctu-
ation of charge density also modifies electronic
states in the quantum well within the self-consistent
Hartree model [7].

The organization of the paper is as follows. In
Section 2, we introduce our model for classical
charge-density fluctuations and the distribution of
field domains in MQWs. In Section 3, we gener-
alize the model to include quantum non-adiabatic
charge-density fluctuations and their effects on the
distribution of field domains in MQWs. Section 4
is devoted to the derivation of a non-adiabatic
differential equation based on the self-consistent
Hartree model by using a shifted Fermi—Dirac

model for the local fluctuation of electron dis-
tributions and provides a quantum-statistical
explanation for the non-adiabatic charge-density
fluctuations introduced in Section 2. Some
numerical results for classical and quantum
charge fluctuations, as well as for non-adiabatic
fluctuations in electron distributions, are pre-
sented in Section 5. The paper is concluded in
Section 6.

2. Classical charge fluctuations

In this section, we study effects of field domains
resulting from the imbalance between injection
and sequential-tunneling currents and show that
these effects become negligible at low temperatures
and voltages.

Electrons in QWs are confined in the direction
perpendicular to the wells, while electrons in
heavily-doped contact layers are free in all three
directions. Therefore, we expect the tunneling of
electrons from a contact layer to a QW (3D-to-2D)
will be physically different than that from one QW
to another (2D-to-2D).

As shown in Fig. 1, we see that the distribution
of uniform dc electric fields in (a) with
Ey=6=6E,=---= &y 1S not stable if the in-
jection current flowing from the left contact layer
to the first QW and the sequential-tunneling cur-
rent flowing from the first QW to the second QW
are different [6,8,9]. As an example, we assume in
(b) that the injection current is smaller than the
sequential-tunneling current. In this situation, the
local field & in the first (emitter) barrier layer has
to be increased so as to equalize these two cur-
rents. Asaresult of & > & =&, = --- = &y, we
know from the Maxwell equations that the charge
density in the first QW will be reduced relative to
the others [8], i.e. p; < p, = p3 =+ = py. Now,
let us further compare the tunneling currents
flowing from the first QW to the second QW and
that flowing from the second QW to the third QW.
We realize from (c) that the tunneling current
flowing from the first QW is less than that flowing
from the second QW since p, < p, for &, = &,.
Therefore, &, > &, = --- = &y 1s required so as to
equalize these two sequential-tunneling currents.
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Fig. 1. The processes (a)-(d) for the formation of field domains in a multiple-quantum-well (MQW) sample with N quantum wells
(QWs). Here, & for k =0,1,2,...,N indicates local electric fields in (N + 1) different barrier layers, and p, for k =1,2,...,N cor-
responds to different charge densities inside N QWs. g, is the chemical potential in contact layers, V4 is the applied voltage, and L, is the

total length of MQWs.

Consequently, we are left with p, <p, <
p3 = - -+ = py. This process will continue up to the
last (NVth) QW, as displayed in (d), until the initial
field distribution &y > & > &, > --- > &y and
density distribution p, < p, < p; < -+ < py are
reached. Here, the local field & is a constant in the
jth barrier layer, and the splitting of different local
electric fields constructs the field domains in
MQWs. The eclectric fields in different barrier re-
gions in steady state will be redistributed if the
total tunneling current flowing into the bottom
contact layer is different from the injection current
flowing out of the top contact layer. Therefore, the
above field-adjustment process will be repeated
again and again until the total tunneling current
flowing to the bottom contact layer is equal to the
injection current flowing from the top contact
layer, and then, a stable distribution of local fields
is formed. It should be noted that the distribution
of electric-field domains in steady state depends on
the value of voltage applied at each moment. A
variation of the applied voltage with time results in
charge-density oscillations in each QW, and
varying field domains as well.

The injection current density (3D-to-2D) from
the top contact layer to the first QW is calculated
to be [8]

Ji?\?[:umﬂl(t)a@@O(t)]
- em*kgT go(l‘)
0]

1+ exp () — E) /Ky T]
xm{1+WPMMﬂ—E—deMMV@ﬂ}’

(1)

L[mwfmwwm

where ¢ is the time, m* is the effective mass of
electrons, T is the electron (or lattice) temperature,
Ly is the thickness of the barrier, 7 [E, |£(¢)|] is the
quantum transmission of electrons [10] with ki-
netic energy E through a barrier biased by an
electric field &(¢), and the chemical potential y, in
the contact layer is related to the electron con-
centration n. by

1 /2m\Y? e E—u -
c=— | = EVE|1 0 .
n 2n2( hz) /0 d \/—{ +exp< T )]

For low 7, electrons in QWs can only populate the
ground subband with quantized energy E,. Fur-
thermore, the sequential-tunneling current density
(2D-to-2D) from the kth QW to the neighboring
(k+ 1)th QW is found to be [1]
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where Ly is the well width, k =1,2,... N repre-
sents the index of N wells, £k = N + 1 corresponds
to the bottom contact layer, uy., = ty, fo(x) =
[1 +exp(x/kgT)]”", and the chemical potential
W (¢) in the kth QW introduced in Egs. (1) and (2)
can be determined by the electron density 7, (¢) in
the kth QW through

B (1)
,Ltk(l) = kBTln { eXp {W] — 1},

which is measured from Ey. In Eq. (2), v{[&4(?)] is
the drift velocity of electrons in the kth barrier
layer, given by [1]

gle) = | 20|,
£0)+ 8

with the saturation velocity vy and saturation field
&, respectively.

As explained in Fig. 1, the distribution of field
domains changes with the value of the voltage
V5(t) applied to the sample. When ¥;(¢) varies with
time, the charge density will fluctuate in each QW,
accompanied by field domains that vary adiabati-
cally across the whole sample. In this case, the
charge-density fluctuation p;(f) = en;(t) can be
described by the equation [6]

dp,(1)
dr

RS (=R 0 (0 84(0] 065
R = PY TR g 1 (1), S0

_P, Z (1—
X O[= 41 (1)) = Pe(1 = P30 1o, o (1), Ex (1)
X 06 (1)) = T2 [1,(0)s 101 (0), (1)) 016, 0)]
7P (1,0, 1 (0): 651 (0] 01651 ()],

P P (0, sy (1), 65 (1)

3)

where the small diffusion current [6,9] is neglected,
0(x) equals one for x>0 and zero for x<0,
j=12,....N, and 0<P.<1 is the capture
probability of electrons into the QW. The first two
terms in Eq. (3) represent the forward contri-
butions from capture current into the jth QW,
while the third and fourth terms represent the
backward contributions from capture current into
that QW. The last two terms correspond to the
forward and backward tunneling currents flowing
out of the jth QW, respectively.

If electrons in QWs can be simply viewed as a
distribution of sheet charges (zero-thickness), we
get the following boundary conditions [6] from the
Maxwell equations for two local fields on both
sides the jth QW

) = 8y (1) = —

—[p,(t) — emxp). (4)
where quantum properties of an electron gas in a
QW have been ignored, nyp is the electron number
density in equilibrium, j = 1,2,..., N and ¢, is the
relative dielectric constant of the well material.
Finally, the sum of individual voltage drops on
each period (well plus barrier) is fixed by the
voltage V;(¢). This restraint gives rise to

€0€r

N
Ly6o(t) + (Ls + Lw) > (2
=1
and L = Lg + N(Lp + L) is the total length of the
MQW structure in Fig. 1.

Combining Egs. (3) and (4) for forward con-
tributions we know that the sum of the displace-
ment and conduction currents is a constant for
P.=1,1e.
€ne d6] 1()
0€r dr

= W) (5)

—|—J2D[ (t)7ﬂj(t)7éa.i*1(t)}
dé;(1)

= eoee g, T (0 1 (0, 65(0),

However, the conduction current itself is not a
constant, which creates classical charge-density
fluctuations and field domains in MQWs. For non-
steady state, the initial condition for Eq. (3) can be
set as p;(0) = enyp if the ac electric field is applied
to the sample after t = 0. Eqgs. (3)-(5) together
(totally 2N + 1 equations) allow us to simulta-
neously solve for the charge-density distributions
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p,(t) (or chemical-potential distributions w,(¢)) for
k=1,2,...,N, as well as for the local-field dis-
tributions &;(¢) fork = 0,1,2,..., N beyond steady
state. For steady state with dp,(¢)/dt =0, only
forward contributions will stay. In this case, we
only need to replace Eq. (3) at each moment by [§]

JjZD[:ujnujJrlﬂg)] PJmJ [.“0»/11;@@0]

with j=1,2,... N. Under this condition, the
measured tunneling current density simply equals
Jai [to, 11, o). But this does not imply a uniform
distribution of charge densities and electric fields.

3. Quantum charge fluctuations

It has been known for a long time that a uni-
form-field distribution will underestimate or
overestimate the sequential-tunneling current in
MQWs at high or low voltages, respectively, [8]
while the charge density will remain in its equi-
librium value even when the uniform electric field
is an ac field. In the classical field-domain model
[6,8], quantum properties of electrons in QWs have
been ignored. On the other hand, it has also been
shown that the quantum non-adiabatic effects give
rise to a residual current at zero of applied ac
voltage due to a space-charge-field effect in the
presence of a uniform ac electric field [2,5,11,12].
Therefore, it is very important to include, simul-
taneously, both the classical field-domain effect
and the quantum non-adiabatic effect on the se-
quential tunneling of electrons in MQWSs when an
ac electric field is applied to the sample.

When the quantum non-adiabatic effect is in-
cluded, Eq. (3) for j=1,2,...,N should be mod-
ified to

dp;(1)
dr

= P(1 = P.Y " 2o, 1 (2), 60(1)] 0180 (1)]

+PZ /kl

< P (1) = eLp 83 (0), py (6), 61(0)]
X 0[87.(1)] = Pe(1 = Po)" 3P [, iy (1), S (1)]

PZ kj—l

k=j+1

X S [ (1) — eLp S (8), w1 (1), 6}, (1)
X 01=&4 ()] =T 7P [1;(2) — eLp &5 (1), 111 (1), 6(2)]
X 018" ()] +J7° [ (1) — eLp & (1), 1,1 (1), &, (1))

, L dét (1)
XG[_gj—l(t)]_;CQW ét : (6)

where the last term represents the non-adiabatic
increase of charge density in the jth QW, &7%(¢) is
the non-adiabatic space-charge field in the jth QW
and barrier, & is the cross-sectional area of the
sample and Cow = (m*e> S /nh*) fo[Eoy — we(nap, T))
is the quantum capacitance with chemical poten-
tial u,(nop, T) for an equilibrium two-dimensional
electron gas in QWs. The non-adiabatic space-
charge fields £7(¢) for j = 1,2,..., N in Eq. (6) are
determined by the following differential equations
[5,11,12]
dé (1 dé;(t) &

Cow ét( ) = Cow d]t( ) I (1), (7)

which contains a “quantum displacement’ current
due to Cqw as a source term. The non-adiabatic
change of current density in Eq. (7) is

A1)
=1 (t) = eLu (1), iy (), £ (010165 (1)
=P uy(1) = eLpd (1), ;1 (1), 6, (0106, (1)]
=Py (1), 1511 (1), 6,(010[8 (1))
7P [y (), 11 (£, 651 (1)]0]=6 -1 ()]

with &3, (f) = 0. The charge-density fluctuations

in Eq. (6) now contain both adiabatic and non-
adiabatic contributions. The last term in Eq. (6)
represents the non-adiabatic contributions. The
total field &} (¢) and the average field &,(¢) in Egs.
(6) and (7) are defined by

GO _ | e+ 650
{gk(,)} - {[(5k(f)+é"k1(t)]/2 '

Simultaneously, Eq. (4) should also be modified to

6,0 = 61-1(0) ~ 280
=L (o,(0) - en), (8)

60 €r
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where Cy = &% /Lp is the classical geometric
capacitance. For non-steady state, the total mea-
sured current density for ¥4, (¢) = 0 is given by

)
= (1= Rl (0. 64010000

+Z (1-F (1 (£) = eLp 3 (1), by (1), 63 (1)]

X 9[52( )+ [, 1 (), Ex ()]0[= 6w (1))

N k
JZD

LgCydé&n(2)
& dt ©)

which includes both conduction and dielectric
displacement currents, where the last term repre-
sents the displacement current from the geometric
capacitance. In this case, the in-flowing injection
current is not equal to the out-flowing conduction
current from the sample due to dp,(¢)/dt # 0. On
the other hand, for 7;(¢) < 0 we have

T
= (1= B T3P b 1y (1), S5 ()01~ 6 (1)

+Z(1 —p)!

X JEP () — eLpé (1), w1 (1), 64y (1)]
X 0=y (0)] + i 1o, 1 (8), 60(1)] 0180 (1)]
LCy d&o(2)
S dr
In steady state, however, there is no non-adiabatic
charge-density fluctuation, and the total measured

current density is mainly determined by the injec-
tion current, which is given for ¥4, (¢) = 0 by

LpCy dén (1)
11
7 a0 1)
and can be modified by the local field at the emitter
barrier. Moreover, due to dp,(¢)/dt # 0 in non-

steady state we can define a total differential ca-
pacitance for the MQW structure

A1t L dp(¢
Calt) ZC& {gtﬂ] P Pcif)?

=1

(10)

Ty (0) = T3P g, i (2), Eo ()] +

(12)

which is time-dependent and different from both
C() and CQw.

From Eq. (8) we know that both the field-
domain and non-adiabatic effects will cause
charge-density fluctuations in QWs in the presence
of an ac electric field. The quantum capacitance
Cqw only enters into Eq. (6) for the charge-density
fluctuations but not into Eq. (9) for the total
measured current density J®®)(¢). Instead, the
conduction current is modified by the non-
adiabatic space-charge field &7°(f) which is in-
duced by the “quantum displacement” current as
shown in Eq. (7). On the other hand, the geometric
capacitance C directly modifies the total measured
current in Eq. (9) as a contribution from the di-
electric displacement current but does not enter
into the charge fluctuations in Eq. (6). When only
the forward contributions are included, the sum of
dielectric displacement and conduction currents
flowing into and out of a QW is a constant for
P. = 1. Because the conduction current flowing
into the first QW is simply the injection current
from the top contact layer, the change in the
conduction currents flowing into different QWs is
determined by the variation of the dielectric dis-
placement currents due to the non-uniform elec-
tric-field distribution inside the whole system.
From Eq. (7) we further find that even under a
uniform ac electric field, the non-adiabatic con-
duction current density flowing through each QW
is not equal to the sum of adiabatic sequential-
tunneling current flowing out of the QW and
the “quantum displacement” current density
LgCqwdé&;(1) /dt because &’ (¢)/dz # 0.

4. Non-adiabatic self-consistent Hartree model

The non-equilibrium electron distribution
function in a shifted Fermi—Dirac model [13] can
be written as
f/to( ) llO(E\k+Ak\ + AEk) (13)

where £,°(E;) is defined by
Ey — n
SI(Ey) = {1 +exp [—k toltzp, )” S (14)
kgT

For the shifted Fermi-Dirac model in Eq. (13),
there exists a local charge-density fluctuation for
each electron state |k), defined by
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& 80u(0) = o100 — f(5)

where 7" is the volume of the sample.

For a MQW system with thick barrier layers,
the adiabatic sequential-tunneling current density
flowing in the z direction (growth direction and
perpendicular to the QW layers) is found to be

JHo (l)
= S T B ol (Be) — f (B el olLn),

(16)

where v} is the group velocity of electrons in the z
direction, and & stands for the applied electric
field. If Qr, > 1 with 7, being the electron se-
quential-tunneling time, 7 [E;,|&b|] has to be
found by solving a time-dependent Schrodinger
equation. Otherwise, 7 [E;, |6b|] can be calculated
from a static Schrodinger equation at each time ¢ if
Q1 < 1. We will be only interested in the latter
case with Qt, < 1 hereafter. If we replace f/(E})
to leading-order approximation by the equilibrium
value f3°(E;) in Eq. (14) for faster electron energy
relaxation processes due to inelastic scattering of
electrons compared to the electron sequential
tunneling, and replace the electron group velocity
v by a drift velocity v4[6’] (a statistically-averaged
group velocity) of electrons in a bulk material, Eq.
(16) reduces to Levine’s sequential-tunneling
model [1]

2e
JH[6%] :7%[&]2«7[&»%&] o' (Ex)
k

= /o' (Ex + e|&b|Lp)], (17)

where v4[6y] = (etp,/m*)éy, and the momentum-
relaxation time 1, is given by

m*vg

e\/ 62+ &p
In Eq. (17), J*[&y]/evq[6b] can be equivalently
viewed as a three-dimensional tunneling-electron
density which depends on &, T and n;p.

From now on, we limit ourselves to an electri-
cal-quantum limit where only the ground subband

(18)

Tp =

of the quantum well is occupied by electrons at low
temperatures and low electron densities. The
electron kinetic energy of the ground subband
(measured from the edge E,) is given by E; =
7*k*/2m*. In the current-surge model [5,11,12], we
assume that AE; is associated with the global
fluctuation (independent of individual electron
state) of the chemical potential of electrons in the
QW. By writing AE; = —Au= py(np, T) — p(?)
for the global chemical-potential fluctuation,
where u(f) and py(np, T) are, respectively, the
transient chemical potential for electron density
ne(t) and that for an equilibrium electron gas in
quantum wells, we get

dAEk - aAEk 6,u di’lc

& - o L d (19)

We further introduce a spatially-averaged non-
adiabatic space-charge field &y, () which is defined
by [5,11,12]

AE, = egna(t)LBv (20)

where &y, (¢) measures the non-adiabatic reduction
of the electron chemical potential in QWs under a
uniform applied electric field. If we use Levine’s
sequential-tunneling model in Eq. (17), we find the
following non-adiabatic current density due to the
existence of this non-adiabatic space-charge field
na(1)

Ao (1) = JHebbm £ 4 8,] — T8y, (1)

where J#[&y] has been given in Eq. (17). In Eq.
(21), the first term can be viewed as an equivalent
capture current into the QW, while the second
term can be regarded as a sequential-tunneling
current flowing out of the QW.

For a QW, the electron density will be constant
if the conduction currents flowing in and out of the
well are equal. The variation of the charge density
in the well is created by an imbalance in conduc-
tion currents. The charge-current conservation law
requires

V%Sp(t) = V% zk: Sp(t) = SATL (D). (22)

d
The left-hand side of Eq. (22) represents the non-
adiabatic charge increase inside the well, while the
right-hand-side of the equation stands for the net
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increase of charge due to non-adiabatic current
flowing into the QW.

If Qr <« 1, the ground-state electron wave
function ¢,(z,¢) inside the QW within the self-
consistent Hartree model is determined by [14]

|:— % % (m*l(z) C?Z) —e6v(t)z + Ugw(2)
T r)} b1 (2.0) = Eo(t)h (2.1, (23)

where Ey(¢) is the time-dependent ground-subband
edge, the electron effective mass m*(z) is mw in the
well and my in the barrier, and Uqgw(z) is zero in-
side the well but ¥, outside the well. Within the
adiabatic limit, we have u(¢) = uy(mp, T), other-
wise dp(t) # 0 for non-adiabatic cases. The Har-
tree potential ¥ 'y(z,¢) in Eq. (23) can be found
from the Poisson equation

2

Ll gruen] =<

€0

[ND(Z) - ne(z7 t)]v (24>

where donors are assumed completely ionized, and
the relative dielectric constant ¢,(z) is ew in the well
and ep in the barrier. Np(z) in Eq. (24) is the static
profile of donor doping for the single quantum

well, ne(z, 1) = |§,(z,6)’ne(¢) is the density func-
tion, and

+00
m(0) = o+ 3p(0) = o+ pap | AESS(E.)

(25)
where p,p, = (mw/mh*) is the density of states for
two-dimensional electrons in the QW, J3f(E,¢)
represents the local non-adiabatic fluctuation of
the electron distribution function in energy space.
Here, the number of electrons in the quantum well
is not a constant due to the non-adiabatic current
flowing. Moreover, we find from Egs. (15), (19)
and (25)

d
&5/0(’)

+00 0
0

&y [ o] R®
2 - _ 0
+eLBp2Ddté‘7b(t)/o dE[ L }

(26)

Applying Eq. (22) and using Eqgs. (21) and (26), we
find the following integral equation for 6f(E, ¢) by
using Levine’s model in Eq. (17)

+o0 a
v [ B (E)
0

dso(t) [ o[ Of(E)
2 b _ Yo
e Lapn g, /0 dE{ E
€pPap

~ {va[&v] +dva[OfT}

+o00o
x/ dET [E+Eo,|65); 7 u] x [f1° (E)
0

+6f(E t) ””(E—i—e|é’b\LB) 8f(E+€|gb|LB, )]

*efm J [ a7 B o Il E)
A\

0" (E+el6v|Lp)] = (27)

where J [E + Eq, |6y|; “VH] is the quantum trans-
mission of electrons and can be calculated by it-
eration (see Appendix A). In Eq. (27), ¥ 'u(z, ¢) and
Ey(¢) are written snnply as ¥’y and Ey. The adia-
batic quantities “V 9(z,1) and E )() can be ob-
tained by mm})ly settlng dp(t) = O in Eq. (24) and

Y u(z,t) = (z,t) in Eq. (23). Moreover, vq4[0f]

introduced in Eq (27) is calculated to be

Svalof] = — L0 / N (28)
ba o 2”2D 0 mw

Finally, Eq. (27) leads us to the non-adiabatic
dynamical differential equation for &1 (E, ¢)

dé(1) /" (E)
dr OF

o {alé]+ SualB LT B+ Bul 6ol ul X 1 (E)

0
ESf(Evt) _eLB

+5f(EJ) 1o (E+e|6v|Lp) — 3f (E +e|6b|Ls,1)]

1 "
“rL—WUd[(@b]J [E+Eo 63 Af ] ‘U(E)
—Jo"(E+el6v|Ly)] =0, (29)

where the initial condition is chosen to be
Sf(E,t) =0 at t =0 if the ac electric field is ap-
plied to the system after t = 0. 5/ (E, ¢) has a lower
bound which is determined by the condition
8 (E,1) + f1(E) = 0.

For small Ay, the first term in Eq. (29) can be
approximated to leading order by
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0 _oAu] af(E)
a—tSf(E,t)NF[ — ] (30)

Similarly, the third term in Eq. (29) can be ap-
proximated as

j[E+E07|5)b|'/VH] o' (E) + 81 (E,1)
VO(E + e|&p|Lp) — Bf(E + e\é”b\LB, 1)

~ TE+E, |67 + (877 /8mp) panAu]
X [f{ME) = £ (E + el 6oLy, (31)
where (6"/%”/6}12[)) = (e /ZGOGWQTF) and qTF =

(€% /2¢€0€w) pyp from the Thomas—Fermi model [14].
By recalling Ay = —eé,(t)Lg, Eq. (29) results in
the current-surge model [11], where

e 0/, (E)
Cow = &5 / dE{ } ,
QW P2p A OF

J/lo[gb]
_¢pp [P O o (. 40
——Ud[gb] dEJ E+EO ,‘é)b‘, %H
LW 0

x [fo" (E) = Jo" (E + el &b|Lp)],

T [E +EO |67 — e(g’naLB}

~ T [E+E |60+ 6l 1)

and v4[&] + 0va[0f] = va[Ey + Ena) If We set T, =
Ly /v with vg being the electron group velocity at
the Fermi energy. The non-adiabatic space-charge
field &, (¢) introduced by Ay = —e&y,(¢)Lp can be
calculated from

/ dESS(E, 1), (32)

which becomes positive if dp(¢) < 0.

Ena(t)
( eLB

5. Numerical results

In this section, we first present numerical results
for distributions of both local fields and charge
densities in the presence of an applied ac electric
field, including effects of classical and quantum
charge fluctuations. After this, we present results
for fluctuating electron distributions and Hartree
potentials. The voltage is defined to be V4 (¢) =

Ev()Ly with &u(t) = Eqc + Euc(t) and &,.(1) =
&wmsin(2nt/T,) for t = 0.

The sample 1 we consider for showing domain
effects is an AlGaAs/GaAs MQW structure. The
total number of QWs is N = 10, with eleven bar-
riers. The parameters for sample 1 are: well
thickness Ly = 75 A, barrier thickness Ly = 339 A,
barrier height 7) = 224.5 meV, electron effective
mass m* = 0.065m, with free electron mass my,
electron areal density nop =5 x 10" cm™2, con-
tact-layer electron concentration #n. =6 x 10"
cm 3, cross-sectional area % = 10~* c¢cm?, capture
probability P. = 0.5, saturation velocity vs=
2 x 10° cm/s, saturation field & =2 kV/cm, and
relative dielectric constant e, = 12. For this sam-
ple, the ground-state subband edge is calculated to
be Ey = 44.1 meV. For the applied ac electric field,
ém = 5kV/iem, £¢c = 0 and T, = 0.1 s. The sample
2 we chose for the non-adiabatic self-consistent
Hartree model is also an AlGaAs/GaAs MQW
structure. The parameters for sample 2 are:
Lw =80 A, Ly =300 A, 7, =331 meV, electron
effective mass in well my = 0.067m,, electron ef-
fective mass in barrier mw = 0.092my, np =
4% 10" cm™2, ¥ =2.25x 107* cm?, v, =2 x 10°
cm/s, & =2 kV/cm, dielectric constant in well
ew = 12.0, and dielectric constant in barrier
ew = 11.2. E(gO) is calculated to be 44.5 meV. For
the applied electric field, &¢. = 0.05 kV/cm and
T, =4s.

We show in Fig. 2 the local fields &;(f) — &y (¢)
in different layers of sample 1 (in (a)) and the
density fluctuation n,(#) — np in different QW’s (in
(b)) at several times ¢/T,, for T = 77 K. From (a)
we find that the field-domain effect is negligible
at ¢t/T, = 0.05 (very small applied field) because
both the injection current J3? and the sequential-
tunneling current J?° are both extremely small in
this case. With the increase of &y(t), i.e. /T, in-
creases from 0.05 to 0.25, fields close to the emitter
barrier are enhanced dramatically relative to the
uniform field &y (¢). This is a result of the huge
current imbalance J3? < J° under the uniform
field &, (), as explained in Flg 1(b). At the same
time, fields close to the receiver barrier are sup-
pressed almost to zero. From (b) we find that when
&v(t) is large, densities close to the emitter barrier
are greatly reduced with respect to the equilibrium
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Fig. 2. Calculated local fields &;(¢) — () in (a) in different barrier layers and density fluctuations n;(f) — nop in (b) inside different
QWs of sample 1 at times 7/7, = 0.05, 0.11, 0.20 and 0.25 s. The parameters used in calculations are given in the text.

value n,p. This is accompanied by a great en-
hancement of the local field & (¢) > &,(¢) at the
emitter barrier, as shown in (a). However, densities
close to the receiver barrier remain near n,p due to
the suppressed local field &y (¢) = 0. It is obvious
from (b) that some electrons have been removed
from the sample since ), [n;(¢) — nop] < 0, which
is true even for steady state. The calculation done
here corresponds to a non-steady state. Therefore,
the net number of electrons removed from the
sample changes with time under an ac voltage,
leading to a differential capacitance C’(¢) (see Eq.

(12)).

Fig. 3 compares local fields &;(r) — &p(¢) in
sample 1 at #/T, = 0.25 as a function of barrier
index j for different values of &m, 7, T in (a) and
different values of N, nyp, n. in (b). From (a) we
find that the field-domain effect is negligible at
T <65 K due to very small injection and sequen-
tial-tunneling currents at these temperatures. The
bigger the field amplitude &, is, the larger &,(¢)
will be. A smaller 7, leads to a negative &(¢) on
the receiver barrier due to the strong non-steady
effect. This is completely different from the steady-
state results [8] in which &y(r) will always be
positive. Furthermore, we find from (b) that the

40 . T T T T 40 T T ' T ‘
—=—¢ =5kV/cm, T =0.1 sec, T=77 K —#—N=10,n,;=5x10" om”, n =6x10" cm®
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Fig. 3. Calculated local fields &;(¢) — &,(¢) in different barrier layers of sample 1 at the time ¢/7,, = 0.25 s. Here, the comparison of
&;(t) — &y (t) with different values of &1, T, and T are presented in (a) and the comparison of those with different values of N, n,p and
n. are shown in (b). The changed parameters are indicated in figures. The other parameters used in calculations are the same as those in
Fig. 2.
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Fig. 4. Calculated non-adiabatic space-charge fields &7*(¢) in
sample 1 at 7/T, = 0.25 as a function of well index j for 7 = 40
and 77 K (left scaled), respectively. The other parameters used
in calculations are the same as those in Fig. 2.

smaller the number of QW’s N is, the lower &(¢)
is. The increase of nyp causes a larger sequential-
tunneling current, leading to a larger value of &,(¢)
due to an enhanced current imbalance between J;?
and JIP. Conversely, the increase of n. introduces
a blgger injection current, leading to a smaller
value of &(¢) due to a suppressed current imbal-
ance between J;P and J7°.

Effects of classical charge fluctuations depend

on the geometric capacitance Cy, as shown by Eq.

40
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Fig. 5. Calculated local fields &;(¢)

— &y (1) in different barrier layers of sample 1 and density fluctuations ;(¢)

(4). However, the quantum capacitance Cqw starts
to play a role when the non-adiabatic effect is in-
cluded, as seen from Eq. (8). The striking thing is
that the effects of quantum charge fluctuations
become more and more important as 7 <65 K,
while the effects of classical charge fluctuations are
negligible at these temperatures. We compare in
Fig. 4 two calculated non-adiabatic fields &7*(¢) at
t/T, = 0.25 in sample 1 as a function of well index
j for T =40 and 77 K. From the figure we know
that &7%(¢) decreases with j due to field-domain
effects at 7 =77 K. However, &7"(¢) becomes in-
dependent of j at 7 =40 K. More importantly,
&7(1) increases with reducing 7.

The effect of non-adiabatic field &7°(¢) can be
seen more clearly from the calculated local fields
&(t) — & (1) in different barrier layers of sample 1
in Fig. 5(a) and density fluctuations n;(¢) — nop in
different QW’s in Fig. 5(b) at ¢/T, = 0.25 with
various values of &y, T, and 7. By comparing solid
and dashed curves in (a) we find that &(z) is re-
duced by a factor of 2 as &, = 5kV/iem, 7, = 0.1s
and T = 77 K (squares). Moreover, &,(¢) decreases
even more due to &7*(¢) when T, is reduced to 0.05
s (stars) due to stronger non-steady effects, but it
decreases much less when 7' is reduced to 40 K
(triangles) due to smaller injection and sequential-
tunneling currents. However, &,(¢) is enhanced
by non-adiabatic effects when &, is reduced to

» —=—¢ =5kV/cm, T,=0.1 sec, T=77K
—o—¢ =1 kV /cm, Tp:0.1 sec, T=77K
2r —A—¢ =5kV/cm, T =0.1 sec, T=40K 1

—*—¢ =5kV/cm, Tp=0.05 sec, T=77 K

a3k A % 4 . s A a .

t/Tp=0.25

0 2 4 6 8 10
Well Index j

— nyp inside different

QWs at /T, = 0.25 with different values of &,, (squares and circles), 7}, (squares and stars) and 7 (squares and triangles). &;(t) — &y (¢)
are compared in (a) with (solid curves) and without (dashed curves) 67" (¢), and the similar comparisons of n,(¢) — nyp are presented in
(b). The changed parameters are indicated in figures. The other parameters used in calculations are the same as those in Fig. 2.
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1 kV/cm (circles). On the other hand, from (a) we
also find that &y () becomes a much more negative
value for &, =5kViem, 7, =0.1sand T =77 K
when &7%(¢) is included in our calculations (solid
curve with squares) than when it is excluded (da-
shed curve with squares). The same situation oc-
curs when either T, is reduced to 0.05 s (stars) or
&m 1s reduced to 1 kV/ecm (circles) but with a
smaller overall magnitude compared to the curves
with the squares. The features observed for &y(¢)
in Fig. 5(a) will affect the conduction current de-
tected at the receiver layer. Effects of quantum
charge fluctuations are reflected in the calculated
n;(t) — nyp in (b), where the reduction of charge in
the QWs is greatly increased except for the case
with small value of &, (circles). Although there is
a strong dependence of &(f) on index j near the
emitter barrier, there is very little dependence of
n;(t) on j there after 7°(¢) is included in the cal-
culations.

In order to gain further information about the
local change in the non-adiabatic electron distri-
bution function, we display 61 (E, ¢) of sample 2 in
Fig. 6 at t/T, = 0.25 with uniform doping for
different values of 7. From the figure it is clear that
Of (E,t) always shows a negative minimum at
to(nap, T) since it is proportional to df,°(E)/OE.
Since the Fermi surface broadens with increasing
T, we find from the figure that the negative mini-
mum is partially suppressed and broadened (solid
curve) when 7 =40 K compared to that at

08 . — ,
/™ Uniform Doping
/" t/ Tp=0.25
- 04l ! T=40 K
3 / e =1 kV/cm
g / m
N . / /'/'
NES AV R
> ’ Non-Adiabatic
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z(A)

0.2 T T T T
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0.4 .
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m
_06 L Il
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E(meV)

Fig. 6. Calculated non-adiabatic change in distribution func-
tions §f(E,t) at t/T, =0.25 for electrons in sample 2 with
uniformly doped QWs. In this figure, we set &, = 1 kV/cm with
T =40 K (solid curve) and T = 20 K (dashed curve).

T =20 K. We also find that the negative minimum
is enhanced when &, is increased (not shown).
Fig. 7(a) and (b) present non-adiabatic charging
effects in the uniformly-doped QW on the Hartree
potentials for sample 2 at 7 =40 K and &, =1
kV/cm. From (a) we find that the positive peak in
the adiabatic Hartree potential Véo) (z,1) at the
center of the QW is greatly suppressed by the non-
adiabatic effect at ¢/T;, = 0.25, leaving two positive
spikes at the edges of the QW. Fig. 7(b) shows the
comparison between non-adiabatic Hartree po-

0.16 . : :
Uniform Doping t/Tp=0.25
T=40K ———1/T =0.75
e =1 kV/cm :
—~ 008} m 1
>
(0]
E
N
I
> )
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Fig. 7. Calculated position z dependence of non-adiabatic (solid curve) and adiabatic (dashed curve) Hartree potentials of sample 2 in
(a) at T=40 K and &, =1 kV/cm with uniform doping inside the QW and non-adiabatic Hartree potentials Vy(z,¢) in (b) for

t/T, = 0.25 (solid curve) and ¢/T, = 0.75 (dashed curve).
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Fig. 8. Calculated non-adiabatic electron distribution functions f(E, ) in (a) and logarithm of absolute value of total non-adiabatic
sequential-tunneling current /,,(f) = & [J*[6}] + AJna(2)] of sample 2 as a function of applied ac electric field & (¢) in (b) for T =40 K
and &y, = 1 kV/em. In (a), we plot f(E, ) at t/T, = 0.25 (dotted curve) and ¢/T,, = 0.75 (dashed curve). The time-independent adiabatic

"Ho

electron distribution function fj°(E) (solid curve) is also shown for the comparison. In (b), the currents calculated from adiabatic
(lower curve) and non-adiabatic (upper curve) electron sequential tunneling are compared with each other.

tentials when electrons in the QW are either re-
moved (z/T, = 0.25, solid curve) or added (¢/7, =
0.75, dashed curve). We find from (b) that the two
positive spikes at the edges of the QW are sup-
pressed but two negative spikes are enhanced when
electrons are added to the well.

Finally, we display in Fig. 8 f(E, ) of sample 2
at ¢t/T, =0.25 (dotted curve) and 0.75 (dashed
curve), as well as in the adiabatic approximation,

32(E), solid curve) in (a) and the log,, |1,.(7)| as a
function of &(¢) in (b). From (a) we see f(E, ¢) has
a fluctuation in time with respect to the adiabatic
So*(E) around the Fermi energy. Compared with
the adiabatic electron sequential-tunneling current
(lower solid curve with AJ,,(¢) =0) in (b), the
symmetry of log,, |1 (#)| with respect to the posi-
tive (electrons being removed) and negative (elec-
trons being added) peaks of &(¢) is broken in the
non-adiabatic case (upper solid curve). A small
offset [5] of the non-adiabatic log,, |/,.(¢)| relative
to &b(¢) = 0 can be seen by comparing upper and
lower solid curves.

6. Conclusions
In conclusion, by including non-adiabatic

space-charge-field effects we have generalized the
previous theories for studying field-domain effects

in MQW photodetectors in the presence of an ac
voltage. We have found from our numerical cal-
culations that field-domain effects are only im-
portant at high temperatures or high voltages,
which implies the existence of significant injection
and sequential-tunneling currents in the system.
We have further found that non-adiabatic effects
become much more visible at low temperatures
and low voltages when the field-domain effects are
negligible. Furthermore, we have derived a dy-
namical differential equation for the non-adiabatic
electron distribution function for sequential-
tunneling current flowing through a MQW system.
Using this equation, we generalized the self-con-
sistent Hartree model for the calculation of non-
adiabatic electronic states in a quantum well.
Finally, we have connected the current quantum-
statistical theory to the previously-proposed
current-surge model with a leading-order approx-
imation.

In this paper, we have assumed the capture
probability is independent of electric field. This can
be justified by the fact that the capture probability
is nearly constant at low electric fields. In the
presence of incident photons, the conduction cur-
rent flowing through the MQW sample will be the
sum of sequential-tunneling and photoexcited
currents. From our studies in this paper, we predict
that the field-domain effects which are significant at
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high temperatures or high photon fluxes will
strongly affect both tunneling- and photocurrents.
On the other hand, non-adiabatic effects modify
these currents at low temperatures and low photon
fluxes when the current flowing through the MQWs
is small. These latter conditions are of utmost im-
portance in any space-based detector applications.
Furthermore, only the self-consistent Hartree
model is employed. The exchange interaction be-
tween electrons is expected to be very small [16] at
T =40 K and has been neglected.

The time scale for observing the non-adiabatic
space-charge effect requires

t <RCow¥ < 1, < 21/Q,

where R, = (Lg/¥)[0J"[&,] /060" is the differ-
ential tunneling resistance, depending on &, and 7.
Further, 27, < 1 ensures the electrons see only an
instantaneous ac electric field during the sequen-

[mmﬂ _ l ) exp(iNpk')
by, (1) {1 =ik’ — (1/2Eq)[E + Ei(t) = Uy ,, + e6p(t)NpA4 —

tial-tunneling process. Finally, ¢ < RCow/ en-
sures the observation of a non-adiabatic space-
charge effect inside the QW. The tunneling time 1,
can be estimated from 7, ~ e/[J"[8p])¥]. For a
superlattice, we take J“[&p].o/ = 1 pA, leading to
7, =0.1 ps and Q <« 10" Hz from Qt, < 1. For a
MQW system, we take J*[&,]). = 10 pA, leading
to 7, = 10 ns and Q < 10% Hz. Difficulties in ob-
serving the non-adiabatic effect may come from
the small QW capacitance Cqow.¥ ~ 100 pF in the
requirement ¢ < RCqw¥. For a superlattice, we
take R, = 10* Q, and then ¢ < 107® s is required
(very hard to observe). For a MQW system, on the
other hand, we take R, = 10'" Q, which implies
t < 10 s (very easy to observe).
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Appendix A

The quantum-mechanical transmission coeffi-
cient 7 [E + Ej, &y; 7 u| used to evaluate the tun-
neling current in Eq. (27) can be found from the
following backward iteration [15] at each time ¢

6,400 ={24 5 [0~ e6s07 - D4

IR0 - E=E0) },0) - 6400
(A1)

for 1<j<Ns, where ¢(t)=d(z,1), V(1) =
VH(Zj, [), Eq = hz/szﬁz, A= LB/NB and Nj is the
number of slabs (thickness 4) within the barrier
layer. Here, UP =0 for j=0 and j=Ng+1.
Otherwise, UP? = ¥;. The ending boundary condi-
tion of Eq. (A.1) produces

it (0] b <t>] ’ (A2

where k' = (4/h)\/2my(E + e&y(t)Lg). From the
solution of Eq. (A.1) we find the quantum-
mechanical transmission of electrons from

1 E Ev(t)L
TE+E, &V n]l = H—b()B7 (A3)
N E
where [S|” = [|a’ + |b|" + 2Re(ab*)]/4. Here, the
two complex numbers, @ and b, are defined by the
starting boundary condition of Eq. (A.1)

al_ (1)
[Z’] - [—(i/Zk)wz(t) —¢0(t))] (A.4)
with k = (4/h)/2msE.
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